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Abstract
We describe in detail the hydrodynamics of a simple model of linked sphere swimmers. We
calculate the asymptotic form of both the time averaged flow field generated by a single
swimmer and the interactions between swimmers in a dilute suspension, showing how each
depends on the parameters describing the swimmer and its swimming stroke. We emphasize the
importance of time reversal symmetry in determining the far field flow around a swimmer and
show that the interactions between swimmers are highly dependent on the relative phase of their
swimming strokes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Tiny organisms, such as bacteria, produce fluid flows
characterized by very low Reynolds numbers, typically
10−4 or smaller, so that their motion is dominated by
the action of viscous stresses rather than inertia. The
topic of swimmer hydrodynamics has developed into a
flourishing field since Taylor’s seminal work in the early
1950s [1, 2], with considerable interest both in the locomotion
of individuals [3–6] and in the interactions between swimmers
and their collective hydrodynamics [7–14].

Considerable insight into swimmer hydrodynamics has
been gained by the analysis of simple models that capture the
essence of swimming whilst remaining analytically tractable,
following the examples laid down by Taylor [2] and Purcell [4].
This has included both a more detailed analysis of the
models proposed by Taylor and Purcell [15, 16] and the
proposal of new models based on a small number of linked
spheres [17–21] or phoretic effects generated by chemical
reactions at the swimmer’s surface [22, 23]. Initial experiments
are beginning to show the viability of some of these simple
models as the basis for artificial microswimmers that may
be developed for drug delivery or manipulating payloads in
microchannels [24–28].

However, whilst our understanding of the motility of
single organisms has developed significantly, rather less is
known about the detailed hydrodynamics of swimmers; the
time averaged flow fields that they generate, the interactions
that occur between individuals and the collective behaviour
that results. These interactions may be expected to be
substantial because of the long range 1/r nature of the fluid

flow generated by point forces at low Reynolds number.
Indeed, they have been shown to be important in the gyrotactic
focusing of bottom heavy algal cells [7], band formation in
magnetotactic bacteria [29] and in many aspects of bacterial
behaviour near surfaces [30–33]. Hydrodynamic interactions
have also recently been shown to provide a novel mechanism
for cooperative motility in groups of reciprocal swimmers,
which otherwise would not swim [34–36].

The flow field generated by a swimmer is often described
as being dipolar at large distances [8, 14, 37]. This is
because a swimmer is self-motile and locomotion is produced
by distorting its shape with the forward motion determined
precisely by the requirement that it experiences zero resultant
force [2, 3]. A multipole description of the flow produced
by a swimmer will then have as its most slowly decaying
part a dipolar term, varying with distance as 1/r 2. However,
it is noteworthy that a detailed discussion by Lighthill of
the flow field produced by a helical filament found that
in many cases the flow decayed much more rapidly than
1/r 2 and that in the particular case of Spirochaetes the flow
falls off exponentially with no algebraic terms in the far
field [38]. More generally, even when the far field flow
is dipolar it is unclear exactly how far from the swimmer
one needs to be before this dipolar character is evidenced.
Nor is it apparent how this distance depends on the type of
swimmer, or the detailed properties of its swimming stroke.
A naive expectation might be that the magnitude of the far
field flow should scale with the slenderness of the swimmer
and the amplitude of the swimming stroke in the same way
as the swimming speed, which is in general linearly and
quadratically, respectively [1, 5], and that this should apply
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to all terms in a multipole expansion. The transition between
near and far field fluid flow would then occur at a distance
determined by purely numerical factors, which might even be
generic across many different types of swimmer. However, as
we shall describe, these naive expectations are not borne out
for a particular model of linked sphere swimmers.

Hydrodynamic interactions between swimmers and col-
lective behaviour have been studied using a variety of theo-
retical models. Continuum descriptions have been developed
on the basis that each individual swimmer acts like a point
dipole and have established the inherent instability of a fully
aligned state where all organisms swim in the same direc-
tion [13, 14, 39]. Another common approach is to resolve in-
dividual swimmers, but only in an effective sense, imagined as
a ‘body’ and a ‘thruster’ [37, 40–42]. More detailed descrip-
tions have also been adopted, some of the earliest of which
made use of flagella driven micromachines [9, 10] and looked
at the propulsive advantage, or disadvantage, of side-by-side
and tandem swimming. The interactions between two fixed,
parallel, rotating helices were investigated [43], revealing that
they do not phase synchronize when driven at constant torque.
Ishikawa and co-workers [44–46] have studied in detail a sim-
ple ‘squirmer’ model, matching far field asymptotics onto near
field lubrication theory and recently applied their results to the
description of collective behaviour in small groups of up to two
hundred individuals [47].

Nonetheless there remains a sizeable gap in our
understanding of how the specific properties of a given
swimmer and its swimming stroke influence the hydrodynamic
interactions between them. Even many simple questions
remain largely unanswered, such as how the interactions scale
with the separation between the swimmers, how sensitive
are the interactions to the particular details of the swimming
stroke, how important is the relative phase of the swimmers,
or even at what stage does the zero Reynolds number
approximation begin to break down. Therefore, in this paper,
we develop a description of the hydrodynamics of a simple
model of linked sphere swimmers, first introduced by Najafi
and Golestanian [17]. Working within an Oseen tensor
approximation, we consider the locomotion of individual
swimmers, the flow field they generate, and the hydrodynamic
interactions between swimmers pointing out, in particular, the
importance of the symmetry of the swimming stroke.

We first, in section 2, describe the Najafi–Golestanian
swimmer and then define the concept of T-duality which
describes the symmetry of a swimmer under time reversal. In
section 3 we calculate the flow field around the swimmer and
show that although the leading term is, in general, dipolar [8]
there are important limits when this ceases to be the case.
We then, in section 4, consider the hydrodynamic interactions
between two swimmers and calculate their relative rotation
and translation to leading order in a perturbative expansion.
We find that the relative phase of the swimmers is key to
determining the way in which they interact.

2. The Najafi–Golestanian swimmer

Linked sphere model swimmers provide a useful frame-
work with which to address many aspects of low Reynolds

Figure 1. Schematic diagram of the variant of the three linked sphere
swimmer first introduced by Najafi and Golestanian [17] that we
employ here.

number hydrodynamics and swimmer–swimmer interac-
tions [19, 48–52]. Their utility arises primarily because the
simplicity of the model allows for detailed analytic and nu-
merical analysis. As a result, the form and origin of the hy-
drodynamics as well as the role of model parameters can be
fully determined, permitting considerable insight into swim-
mer motility and interactions.

Perhaps the simplest of these models, first introduced by
Najafi and Golestanian [17], consists of three spheres of radius
a arranged colinearly and connected by rigid, thin rods of
‘natural’ length D. The rods are made to extend and contract,
e.g., by the imagined action of an internal motor, in a periodic
and non-reciprocal manner, allowing the organism to swim in
the direction of its long axis. The swimming direction breaks
the symmetry of this axis so that the spheres can be labelled
unambiguously 1, 2 and 3, as indicated in figure 1, increasing
in the direction n in which it swims.

Numerous variants of this model exist, for example
allowing for different sized spheres [51] or for a bend between
the two rods, enabling the swimmer to rotate [19]. Here we
confine our attention to a simple version of the swimmer in
which the lengths of the rear and front rods are prescribed to
vary sinusoidally as

D + ξR sin(ωt) and D + ξF sin(ωt − φ), (1)

respectively. Throughout this paper we will employ a
shorthand notation ξ̃R := ξR sin(ωt) and ξ̃F := ξF sin(ωt −φ)

to reduce the length of our formulae.
Before embarking on a detailed analysis of this model,

we first describe some simple, but important, features that
can be elucidated purely from symmetry considerations and
the kinematic reversibility of Stokes flows. It has long been
appreciated that kinematic reversibility excludes net motility
in organisms that employ reciprocal swimming strokes, such
as a waving rudder or a single-hinged scallop [4, 53, 54].
This is because such reciprocal motions look identical whether
viewed forwards or backwards in time. However, if instead
we view the motion of an organism that actually does swim
backwards in time, then kinematic reversibility allows us to
interpret this as a different organism swimming forwards in
time. Clearly these two swimmers are not really distinct,
but merely time reversed versions of each other, and for this
reason we refer to them as T-dual. In the case of the Najafi–
Golestanian swimmer the T-dual simply corresponds to an
interchange of the two amplitudes, ξR ↔ ξF. From this we
see an important limiting case that if the two amplitudes are
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equal, ξR = ξF, the swimmer and its dual in fact perform the
same swimming stroke, and we thus refer to it as self-T-dual.
To be more precise, and avoid any potential confusion with
reciprocal swimming strokes, we should say that a swimmer is
self-T-dual if its swimming stroke is time reversal covariant.
By contrast, reciprocal swimming strokes are time reversal
invariant. Although this seems like a highly specialized type
of swimmer, many of the simple models that have been
suggested in the literature belong to this class. For example,
the rotating anchor ring described by Taylor [2], Purcell’s
three link swimmer [4], the ‘pushmepullyou’ swimmer [18],
a sinusoidally waving sheet [1] and a rigidly rotating helical
filament [3] are all self-T-dual. As we shall now describe,
many of the general features of the hydrodynamics of the
Najafi–Golestanian swimmer may be best understood and
interpreted in terms of these symmetries arising from kinematic
reversibility.

We begin our analysis of the hydrodynamics of the Najafi–
Golestanian swimmer with a brief review of the motion of
a single swimmer [17, 19, 51] to establish our notational
conventions and obtain a number of results that we shall use
in subsequent sections. The linearity of the Stokes equations
allows the velocity field generated by any low Reynolds
number flow to be written as a linear combination of the forces
acting on the fluid

u(x) =
∑

r

Gr (x)f r , (2)

where f r is the force acting on sphere r of the swimmer and
Gr (x) is the appropriate Green function for the fluid domain
under consideration. Here we restrict our analysis to the case
where the separation between spheres is large compared to
their radius and hence replace a distribution of forces over
the sphere surface with a single force applied at its centre.
Part of the difficulty in applying equation (2) is that when
many spheres are present neither the forces, nor the Green
function are, in general, known exactly so that some form of
approximation is needed. A common approximation, relevant
to a dilute suspension of spherical objects in an otherwise
unbounded fluid, is to take the Green function to reduce to the
Oseen tensor far from the sphere and to reproduce the familiar
Stokes drag at the sphere [55, 56]

Gr (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

6πμa
I

if |x − xr | = a,

1

8πμ

1

|x − xr |
(

I + (x − xr ) ⊗ (x − xr )

|x − xr |2
)

if |x − xr | � a,

(3)

where μ is the fluid viscosity and a is the sphere radius. Within
this framework the fluid motion is then entirely determined by a
knowledge of the forces fr with which the swimmer acts on the
fluid as a result of its changing shape. These are determined by
the combined requirements that each swimmer generates no net
force,

∑
r f r = 0, and that the flow field produced is consistent

with the shape changes that it undergoes during its swimming
stroke

u(x2) − u(x1) =: bR = (∂t ξ̃
R)n, (4)

u(x3) − u(x2) =: bF = (∂t ξ̃
F)n. (5)

Inserting equation (2) for the fluid flow converts these
consistency requirements into a relationship between the
changing shape of the swimmer and the forces with which it
acts on the fluid{

1

6πμa
I
( −2 −1

1 2

)
+ G1(x2)

(
2 1

−1 0

)

+ G2(x3)

(
0 1

−1 −2

)
+ G1(x3)

(
0 −1
1 0

)}(
f1

f3

)

=
(

bR

bF

)
, (6)

where we have eliminated f2 using the force-free constraint.
In our approach the shape of the swimmer is specified as
a function of time and the forces are the unknowns, which
are determined by inverting equation (6). The simple linear
geometry of the Najafi–Golestanian swimmer allows this
inverse to be calculated exactly, however, in anticipation of our
subsequent calculations we will not pursue this, and instead
give a perturbative inversion, using a/D as a small parameter(

f1

f3

)
= 2πμa

{
bR

( −2
1

)
+ bF

( −1
2

)

− 2πμa

[
G1(x2)

{
bR

(
4
1

)
+ bF

( −1
2

)}

+ G2(x3)

{
bR

( −2
1

)
+ bF

( −1
−4

)}

+ G1(x3)

{
bR

(
4

−5

)
+ bF

(
5

−4

)}]

+ o([a/D]2)

}
. (7)

To determine the translational motion of the swimmer
during any given swimming stroke it suffices to track the
position of any one of the three spheres, since from this and
the prescribed shape of the swimmers the positions of the
other spheres automatically follow. We choose to track the
position of the centre sphere, although this choice is somewhat
arbitrary and any other choice would be just as good. In
the zero Reynolds number limit the velocity of each sphere
is required to match instantaneously the local velocity of the
fluid surrounding it, so that the position of the sphere evolves
according to
dx2

dt
= u(x2), (8)

= 1

3
(bR − bF) + 2πμa

3
{G2(x3)[2bR + bF]

− G1(x2)[bR + 2bF] + G1(x3)[bF − bR]} + o([a/D]2).

(9)
Integrating this expression gives the displacement of the centre
sphere from its initial position as

δx2(t) = n
∫ t

0
dt ′

{
1
3 ∂t ′(ξ̃R − ξ̃F)

+ a

6

[
1

D + ξ̃F
∂t ′

(
2ξ̃R + ξ̃F

) − 1

D + ξ̃R
∂t ′(ξ̃R + 2ξ̃F)

+ 1

2D + ξ̃R + ξ̃F
∂t ′(ξ̃F − ξ̃R)

]
+ o([a/D]2)

}
. (10)
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The first term describes an o(ξ) oscillation about its initial
position that integrates to zero over a complete swimming
stroke. This is precisely the motion the sphere would undergo
if the swimmer was in vacuum and corresponds to the centre
of mass remaining fixed. However, since the swimmer is in a
fluid medium this is not the only contribution to its motion.
The additional terms at o(a/D), and higher, arise due to
hydrodynamic interactions and describe swimming, since they
do not integrate to zero over a complete swimming stroke.
Performing the integration we find that to leading order the
total distance moved after each stroke is

T = 2πa

3

ξRξF sin(φ)

D2
{(D/ξR)2[(1 − (ξR/D)2)−1/2 − 1]

+ (D/ξF)2[(1 − (ξF/D)2)−1/2 − 1]
− 1

4 (2D/�)2[(1 − (�/2D)2)−1/2 − 1]} + o([a/D]2),

(11)

where we have defined

� = ((ξR)2 + 2ξRξF cos(φ) + (ξF)2)1/2. (12)

3. Time averaged flow field

In propelling itself through the fluid, the swimmer generates a
net time averaged flow field, whose nature we now investigate.
The naive expectation is that the far field form of this flow will
be accurately described as dipolar, since this is the most slowly
decaying term in a multipole expansion, the monopole term
vanishing on account of there being no net force acting on the
swimmer [8, 14, 37].

The time averaged flow field produced by a Najafi–
Golestanian swimmer is given by

ū(x) := 1

T

∫ T

0
dt u(x) = 1

T

∫ T

0
dt

∑

r

Gr (x)f r . (13)

Part of the difficulty in evaluating this average flow is that the
position of the swimmer changes with time, so that the distance
|x − xr | is not a constant. Although the positions of each of the
spheres, xr (t), are in principle known from equation (10), the
use of this directly does not lead to any simple, or convenient
expressions for the average flow. However, in the far field,
at distances large compared to the size of the swimmer, the
magnitude of the oscillations in xr (t) will be small compared
to the distance to the point of observation. With this in mind
we write

x − xr = (x − y) + (y − xr ) =: r − δxr , (14)

where y is a fixed point used to represent the (average) position
of the swimmer, and make use of a multipole expansion of the
stokeslet. In principle the choice of the point y is somewhat
arbitrary, however, for convenience we shall take it to be the
position of the centre sphere at a reference time, t = 0,
corresponding to the start of the swimming stroke; y = x2(t =
0). The stokeslet is then expanded as a formal power series in
1/r

Gr (x) =: 1

8πμ

∞∑

j=0

[S( j)(r)](δxr )⊗ j , (15)

leading to a multipole expansion for the far field time averaged
flow

ūα(x) =
∞∑

j=0

S( j)
αβ σ ···τ (r)nβnσ · · · nτ

×
∫ T

0

dt

T

∑

r

(δxr ) j 1

8πμ
f r , (16)

where we have made use of the fact that both the forces fr and
the displacements δxr are parallel to the swimming direction
n. Equation (16) is composed of two factors; the tensorial term
S( j)n⊗( j+1) which describes how the flow depends on position
relative to the swimmer and how it decays with distance, and
an integral which captures how the details of the swimming
stroke determine the coefficient of each term in the multipole
expansion. We can see immediately that the leading j = 0
term vanishes on account of the total force generated by the
swimmer being zero. For the Najafi–Golestanian swimmer
both of the next two terms, the j = 1 dipolar and j = 2
quadrupolar terms, provide important contributions to the time
averaged far field flow and we shall address them both in turn.

3.1. Dipolar flow

The most slowly decaying term in the multipole expansion,
equation (16), is the 1/r 2 dipolar contribution, so that at
sufficiently large distances we can expect this to provide an
accurate description of the average flow field generated by
most swimmers. To calculate the integral in equation (16) we
make use of the useful relations

δx1 = δx2−(D+ξ̃R), and δx3 = δx2+(D+ξ̃F),

(17)
which allow us to write
∑

r

(δxr ) f r = (D + ξ̃F) f 3 − (D + ξ̃R) f 1,

= 1
2 (2D + ξ̃R + ξ̃F)( f 3 − f 1)

+ 1
2 (ξ̃F − ξ̃R)( f 3 + f 1). (18)

Inserting equation (7) for the forces we find that the relevant
integral for the dipolar flow field is

a

8T

∫ T

0
dt

{
3

(
2D + ξ̃R + ξ̃F + 3a

2

)
∂t(ξ̃

R + ξ̃F)

+ (ξ̃R − ξ̃F)∂t (ξ̃
R − ξ̃F)

+ a

2
(ξ̃R − ξ̃F)

[
1

D + ξ̃R
∂t(2ξ̃R + 4ξ̃F)

− 1

D + ξ̃F
∂t (4ξ̃R + 2ξ̃F)

− 1

2D + ξ̃R + ξ̃F
∂t(ξ̃

R − ξ̃F)

]}
. (19)

The first line is a total derivative and thus does not contribute
to the final result. The remaining integrals can be done using
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standard techniques to give

ωa2 sin(φ)

8D

{
2ξF(ξR − ξF cos(φ))

(
D

ξR

)2

×
[(

1 −
(

ξR

D

)2)−1/2

− 1

]

+ ξF(ξR + 2ξF cos(φ))

(
D

ξR

)2[
1 −

(
1 −

(
ξR

D

)2)1/2]

− 2ξR(ξF − ξR cos(φ))

(
D

ξF

)2[(
1 −

(
ξF

D

)2)−1/2

− 1

]

− ξR(ξF + 2ξR cos(φ))

(
D

ξF

)2[
1 −

(
1 −

(
ξF

D

)2)1/2]

− ξRξF(ξR + ξF)(ξR − ξF)

8D2

(
2D

�

)4

×
[

2 −
(

1 −
(

�

2D

)2)1/2

−
(

1 −
(

�

2D

)2)−1/2]}
,

(20)

where � is again given by equation (12). Although this
expression is quite lengthy and complicated its most important
feature is readily apparent: namely it vanishes identically
if ξR = ξF. This is a direct consequence of kinematic
reversibility and is a generic feature of self-T-dual swimming
strokes. Such strokes are time reversal covariant, however
dipolar flow fields are not: reversing the direction of time
converts a dipolar flow in which the fluid flows away from
the swimmer along its direction of motion, known as extensile,
into one in which the fluid flows towards the swimmer along
the same direction, known as contractile. Dipolar flows are
thus incompatible with self-T-dual swimming strokes and must
therefore be absent for such swimmers, an observation first
made by Pooley [48].

3.2. Quadrupolar flow

For both self-T-dual and more general Najafi–Golestanian
swimmers, the quadrupolar term ( j = 2) also makes an
important contribution to the time averaged far field flow.
It decays more rapidly than the dipolar term, varying with
distance as 1/r 3, however its amplitude turns out to be
substantially larger so that over a considerable range of
intermediate distances from the swimmer, the time averaged
flow field may be well approximated as quadrupolar.

To evaluate the integral in equation (16) we again make
use of the relations in equation (17) to write∑

r

(δxr )2 f r = ( f 3 + f 1)[δx2 (ξ̃F − ξ̃R)

+ (D + 1
2 (ξ̃

F + ξ̃R))2 + 1
4 (ξ̃

F − ξ̃R)2]
+ ( f 3 − f 1)(D + 1

2 (ξ̃F + ξ̃R))(2δx2 + ξ̃F − ξ̃R). (21)

Inserting the expressions for the forces from equation (7) and
retaining only terms of quadratic order in ξ , the integral in
equation (16) becomes

a D

4T

∫ T

0
dt

{[
1 + 19a

8D

]
(ξ̃F + ξ̃R)∂t (ξ̃F − ξ̃R)

+ 3

[
1 + 3a

4D

]
(2δx2 + ξ̃F − ξ̃R)∂t

(
ξ̃F + ξ̃R

)}
. (22)

We integrate the second term by parts and use equation (10) to
substitute for ∂tδx2 to find that equation (22) reduces to

17a2

32T

∫ T

0
dt (ξ̃F + ξ̃R)∂t (ξ̃F − ξ̃R) = 17ωa2ξRξF sin(φ)

32
.

(23)

3.3. Far field flow

These two contributions, the dipolar and quadrupolar terms,
provide a good description of the far field properties of the time
averaged flow generated by the swimmer

ū(x) = 21ωa2ξRξF((ξR)2 − (ξF)2) sin(φ)

256D3r 2
{[3(n · r̂)2 − 1]r̂}

+ 17ωa2ξRξF sin(φ)

64r 3
{3(n · r̂)[5(n · r̂)2 − 3]r̂

− [3(n · r̂)2 − 1]n} + o(1/r 4), (24)

where we have used the lowest order term in a series expansion
in ξ/D for the amplitude of the dipolar term. A comparison
of the amplitudes of these two contributions depends on the
direction to the observation point relative to the swimming
direction, i.e., on n · r̂. A natural direction in which to make
this comparison is along the swimming direction, n · r̂ = 1,
whereupon we find that the flow field only becomes dipolar for
distances

r

D
� 136D2

21(ξR + ξF)|ξR − ξF| . (25)

This is a remarkable result, which shows that it is only
appropriate to view the Najafi–Golestanian swimmer as a
simple force dipole at distances of several tens of body lengths
from the swimmer. At closer distances the quadrupolar flow
is more significant. However, it should be cautioned that this
result is in a sense a worst case scenario. The amplitude of
the dipolar term is required to vanish if either ξR = 0 or
ξF = 0, since then the swimming stroke is reciprocal, and
also when ξR = ξF and the swimmer is self-T-dual. This
means that the amplitude of the dipolar term must include a
factor ξRξF(ξR − ξF). For sinusoidal strokes with a single
frequency, terms of cubic order in the oscillations all integrate
to zero, leading to the dipolar flow field scaling as ξ 4, as in
equation (24). However, this is not true for other swimming
strokes: in particular, for the original, four-stage swimming
stroke [17] we have found that the amplitude of the dipolar flow
scales as ξ 3, and that this dominates the far field time averaged
flow for distances [48]

r

D
� 68D

29|ξR − ξF| , (26)

a rather more conservative result than equation (25).

4. Swimmer–swimmer interactions

We now turn our attention to the hydrodynamics of more
than one swimmer. That is, we wish to ask what will
be the influence on one swimmer of the presence of other
swimmers nearby in the fluid. Our approach to calculating the
hydrodynamics of a group of swimmers parallels our analysis

5
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of a single swimmer. In particular, the starting point is again
the statement that linearity of the Stokes equations allows the
fluid flow to be written as a linear combination of the forces
acting on the fluid

u(x) =
∑

A

∑

r

Gr
A(x)f r

A. (27)

Here the subscript A labels the individual swimmers and the
other notation is the same as in equation (2). As for the
single swimmer, we will consider that this expression provides
a complete solution if the forces fr

A can be determined in terms
of the prescribed swimming stroke. The constraint that each
swimmer is force-free still applies,

∑
r fr

A = 0 ∀ A, however
the consistency relations for the fluid flow need to be modified
to read (for each swimmer)

u(x2
A)−u(x1

A) =: bR
A = (∂t ξ̃

R
A )nA +[A, (D+ ξ̃R

A )nA], (28)

u(x3
A)−u(x2

A) =: bF
A = (∂t ξ̃

F
A)nA +[A, (D+ ξ̃F

A)nA], (29)

in order to account for the rotational motion of the swimmer.
Here we employ an unconventional bracket notation, [, ], to
denote the vector cross product. The additional unknown of
the angular velocity A of each swimmer is determined by
imposing the further constraint that its motion impart no net
torque to the fluid

∑

r

[
xr

A − y, f r
A

] = 0. (30)

The point y about which the torque is measured is completely
arbitrary because of the force-free constraint.

As for the motion of a single swimmer, we use
equations (27)–(29) to set up a system of linear equations
relating the independent forces (f2

A being eliminated via the
force-free constraint) to the specified changing shape of the
swimmer. Schematically, these may be written as a matrix
equation ∑

B

GABFB = BA, (31)

where the vectors BA,FA and the matrix GAB are themselves
vector and matrix valued

BA :=
(

b1
A

b2
A

)
, FA :=

(
f1

A
f3

A

)
, (32)

GAB :=
( [G12

B (x2
A) − G12

B (x1
A)] [G32

B (x2
A) − G32

B (x1
A)]

[G12
B (x3

A) − G12
B (x2

A)] [G32
B (x3

A) − G32
B (x2

A)]
)

,

(33)
and Grs

B (x) = Gr
B(x) − Gs

B(x). The forces will be known
if the matrix GAB can be inverted. To perform the inversion
we make use of the fact that the swimmers are in a dilute
suspension so that the interactions are all in the weak, far field
regime. Consequently the elements GAA are much larger than
GAB , A �= B , which may be exploited in writing

FA = G−1
AABA −

∑

B �=A

G−1
AAGABFB , (34)

with the final solution subsequently obtained by iteration. The
first term represents the forces associated with the swimming

of a single isolated organism and are given as before by
equation (7). The second term gives the contribution to the
forces due to interactions with all the other swimmers.

In treating the interactions between swimmers we need
to consider objects of the form Gr

B(xs
A), stokeslets associated

with spheres comprising swimmer B evaluated at the location
of the spheres of swimmer A. In the case of a dilute
assembly of swimmers considered here it may be assumed
that the separation between swimmers is large compared to
the size of any given individual organism. Then, generalizing
equation (14), we introduce the decomposition

xr
B − xs

A = (x2
B(0) − x2

A(0)) + (xr
B − x2

B(0)) − (xs
A − x2

A(0)),

=: rB A + δxr
B − δxs

A, (35)

and perform a multipole expansion of the stokeslets

Gr
B(xs

A) =: 1

8πμ

∞∑

j=0

j∑

k=0

[S( j,k)(rB A)](δxs
A)⊗k(δxr

B)⊗( j−k).

(36)
This decomposition affords a convenient splitting of the
interaction into an essentially geometric piece, S( j,k)(rB A),
dependent only on the relative position of the swimmers, and
terms dependent on the details of the swimming motions.
The expansion coefficients S( j,k) are formally defined by
equation (36) from which it may be shown that they are given
by

S( j,k)

αβ σ ···τ (r) = (−)k

k!( j − k)!∂σ · · · ∂τ

{
1

r
(δαβ + r̂αr̂β)

}
. (37)

These tensors are fully symmetric in the j indices σ · · · τ as
well as being symmetric in the indices α, β . They scale with
the separation between swimmers as r−( j+1) so that the terms
with the lowest values of j are expected to dominate the far
field interactions. With this expansion of the stokeslets the
contribution to the forces coming from interactions is found
to be
(

( f INT)1
A

( f INT)3
A

)

α

= a

4

∑

B �=A

∞∑

j=2

j−1∑

k=1

S( j,k)

αβ σ ···τ ν···ρ(rB A)

×
(−2(δx1

A)⊗k
σ ···τ + (δx2

A)⊗k
σ ···τ + (δx3

A)⊗k
σ ···τ

(δx1
A)⊗k

σ ···τ + (δx2
A)⊗k

σ ···τ − 2(δx3
A)⊗k

σ ···τ

)

×
∑

r

(δxr
B)⊗( j−k)

ν···ρ ( f r
B)β . (38)

4.1. Swimmer rotation

Equations (7) and (38) provide the forces generated by the
swimmer in performing its swimming stroke so that the
sole remaining unknown is its angular velocity, A. This
is obtained by the requirement that the swimmer’s motion
through the fluid is such that no net torque acts on it,
equation (30), which we write as

0 =
∑

r

[(xr
A − y), fr

A],

= [(x3
A − x2

A), f3
A] − [(x2

A − x1
A), f1

A],
= (D + 1

2 (ξ̃R
A + ξ̃F

A))[nA, (f3
A − f1

A)]
+ 1

2 (ξ̃F
A − ξ̃R

A )[nA, (f3
A + f1

A)]. (39)

6
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In manipulating equation (39) it only proves necessary
to balance the o(1) part of the single swimmer forces,
equation (7), against the contribution due to interactions,
equation (38). There is no fundamental obstacle to retaining
the higher order terms from equation (7), however, since these
lead to a substantial increase in the length of formulae and
play no essential role, they will be omitted in what follows.
After some straightforward manipulations the torque balance
equation becomes

εαβγ

{
Pn A

β n A
δ [A, ]γ δ − a

4

∑

B �=A

∞∑

j=2

j−1∑

k=1

S( j,k)

γ λ σ ···τ ν···ρ

× (rB A) n A
β Ak

σ ···τ C j−k
λ ν···ρ

}
= 0, (40)

where we have defined

P := 6(D + 1
2 (ξ̃

R
A + ξ̃F

A))2 + 1
2 (ξ̃

R
A − ξ̃F

A)2, (41)

Ak
σ ···τ := 3D((δx3

A)⊗k
σ ···τ − (δx1

A)⊗k
σ ···τ )

+ ξ̃R
A (−2(δx1

A)⊗k
σ ···τ + (δx2

A)⊗k
σ ···τ + (δx3

A)⊗k
σ ···τ )

+ ξ̃F
A(−(δx1

A)⊗k
σ ···τ − (δx2

A)⊗k
σ ···τ + 2(δx3

A)⊗k
σ ···τ ), (42)

C j−k
λ ν···ρ := (b1

B)λ[−2(δx1
B)⊗( j−k)

ν···ρ + (δx2
B)⊗( j−k)

ν···ρ
+ (δx3

B)⊗( j−k)
ν···ρ ] + (b2

B)λ[−(δx1
B)⊗( j−k)

ν···ρ
− (δx2

B)⊗( j−k)
ν···ρ + 2(δx3

B)⊗( j−k)
ν···ρ ]. (43)

This equation is easily solved to give the angular velocity of
each swimmer as

[A, ]αβ = a

4

∑

B �=A

∞∑

j=2

j−1∑

k=1

(δαγ n A
β − δβγ n A

α )

× [S( j,k)

γ λ σ ···τ ν···ρ(rB A)](P−1 Ak
σ ···τ )C

j−k
λ ν···ρ. (44)

Our main interest is in the net effect that the interactions
have over one complete swimming stroke. Now, the orientation
of each swimmer evolves according to the equation

dn A
α

dt
= [A, nA]α. (45)

Technically, this is a set of Nswimmer coupled, non-linear,
ordinary differential equations. We make no attempt to solve
it exactly, being satisfied with a perturbative approach. First
we solve for the motion of a single swimmer, which we then
substitute into the right-hand side of equation (45). This means
the right-hand side may be considered as simply a function of t
and integrated directly. In this case a single swimmer does not
rotate, so that where n appears on the right-hand side it may be
considered just a constant vector. The net change in orientation
over a complete swimming stroke is thus

n A
α (T ) − n A

α = a

4

∑

B �=A

∞∑

j=2

j−1∑

k=1

(δαβ − n A
α n A

β )

× [S( j,k)

βγ σ ···τ ν···ρ(rB A)]nB
γ n A

σ · · · n A
τ nB

ν · · · nB
ρ (I( j,k)), (46)

where

I( j,k) :=
∫ T

0
dt P−1 Ak C j−k . (47)

Again we emphasize that this expression decomposes the
effect of the interactions into two parts: the tensorial part
involving S( j,k) which captures how the relative positions and
orientations of the swimmers influence their interactions, and
the integral I( j,k) which captures the details of the swimming
stroke. In fact, the form of these integrals offers an important
insight into the nature of hydrodynamic interactions between
swimmers. A short calculation reveals that A1 = P so that
all terms with k = 1 in equation (46) are independent of the
swimming motion of swimmer A. We refer to these as passive
interactions. They correspond to the rotation that would be
experienced by an inanimate object, or dead swimmer, drifting
passively in the flow field generated by the other swimmers. By
contrast, the terms with k � 2 depend on the swimming motion
of both swimmers. We call these active interactions. They
represent the additional rotation experienced by the swimmers
because they are trying to swim simultaneously and encode all
of the information about the relative phase of the swimmers
and the collective nature of the interactions. As we shall show,
it is these active terms that provide the dominant contribution
to the interactions between swimmers.

The most slowly decaying active term in the far field is the
contribution with j = 3, k = 2, which we now determine. A
straightforward calculation gives

A2 = P[2δx2
A + 7

6 (ξ̃F
A − ξ̃R

A )] − 1
3 (ξ̃F

A − ξ̃R
A )3, (48)

C1 = 3D ∂t (ξ̃
F
B + ξ̃R

B ) + ∂t((ξ̃
F
B)2 + ξ̃F

B ξ̃R
B + (ξ̃R

B )2) + o(a/D),

(49)
so that the integral I(3,2) is given by

I(3,2) = 3π D

2
{ξR

A [ξR
B sin(ηB A) + ξF

B sin(ηB A − φB)]
− ξF

A[ξR
B sin(ηB A + φA)

+ ξF
B sin(ηB A + φA − φB)]} + o(ξ 4). (50)

Here, ηB A is the phase of swimmer B relative to swimmer
A, i.e., if ξ̃R

A = ξR
A sin(ωt) then ξ̃R

B = ξR
B sin(ωt +

ηB A) and similarly for the front amplitudes. We remark
in passing that this amplitude does not vanish for φA =
φB = 0 when the two swimmers are reciprocal. Instead
we find I(3,2) = (3π D/2)(ξR

AξR
B − ξF

AξF
B) sin(ηB A), so that,

provided the swimmers are not in phase or exactly out of
phase, they can still interact hydrodynamically, despite each
individually performing a reciprocal motion, an insight that has
recently been applied to the collective locomotion of reciprocal
oscillating dumb-bells [35, 36].

Combining equations (46) and (50), we find that the
active contributions to the interactions lead to a rotation of the
swimmers that in the far field has the asymptotic form

ΔnA
active ∼

∑

B �=A

−3aI(3,2)

8r 4
B A

[1 + 2(nA · nB )2

− 5(nA · r̂B A)2 − 5(nB · r̂B A)2

− 20(nA · nB)(nA · r̂B A)(nB · r̂B A)

+ 35(nA · r̂B A)2(nB · r̂B A)2]{r̂B A − (nA · r̂B A)nA}. (51)

7
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For the passive interactions, the rotation can be determined
from the k = 1 terms or, without need to repeat the
integrations, using the time averaged flow field, equation (24),
from which we obtain

ΔnA
passive ∼

∑

B �=A

63πa2ξR
B ξF

B((ξR
B )2 − (ξF

B)2) sin(φB)

128D3r 3
B A

× [(nA · r̂B A) + 2(nA · nB )(nB · r̂B A)

− 5(nA · r̂B A)(nB · r̂B A)2]{r̂B A − (nA · r̂B A)nA}
+

∑

B �=A

51πa2ξR
B ξF

B sin(φB)

32r 4
B A

{[3(nA · nB)

− 15(nA · r̂B A)(nB · r̂B A)

− 15(nA · nB)(nB · r̂B A)2

+ 35(nA · r̂B A)(nB · r̂B A)3]{r̂B A − (nA · r̂B A)nA}
+ [(nA · r̂B A) + 2(nA · nB)(nB · r̂B A)

− 5(nA · r̂B A)(nB · r̂B A)2]
× {nB − (nA · nB)nA}}. (52)

The most significant implication of this result is that the
rotation generated by the active interactions is substantially
larger than that of the passive interactions for all reasonable
separations. The passive terms scale as (a/D)2, while the
active terms scale as a/D. Thus the former are suppressed by
an additional factor of the slenderness of the swimmer, which
is always a small number for the Najafi–Golestanian swimmer.
The important consequence of this is that the relative phase,
which enters only into the active terms, plays a significant role
in the hydrodynamic interactions of microswimmers.

4.2. Swimmer advection

In addition to a rotation of their direction of motion, the
interactions also give rise to an advection of each swimmer
in the flow field produced by the others. This advection
enters into the determination of the translational motion of each
swimmer described in section 2. Equation (8) still applies,
although with the fluid velocity given by equation (27)

dx2
A

dt
= u(x2

A) =
∑

s

Gs
A(x2

A)f s
A +

∑

B �=A

∑

r

Gr
B(x2

A)fr
B . (53)

The advection arises both directly, through the second
∑

B �=A
term in equation (53), and indirectly, from the fact that the
forces f s

A differ from their values for a single isolated swimmer
on account of the interactions. When these are combined we
find that the advective contribution to u(x2

A) is, to leading order,
given by

a

12

∑

B �=A

∞∑

j=1

j−1∑

k=0

[S( j,k)(rB A)]((δx1
A)⊗k + (δx2

A)⊗k

+ (δx3
A)⊗k)C j−k . (54)

The equation for the translational motion, equation (53), is
also a set of coupled, non-linear, ordinary differential equations
and hence we employ the same perturbative approach as for the

rotation, obtaining

[x2
A]α(T ) − [x2

A]α = T n A
α

+ a

12

∑

B �=A

∞∑

j=1

j−1∑

k=0

[S( j,k)

αβ σ ···τ ν···ρ(rB A)]

× nB
β n A

σ · · · n A
τ nB

ν · · · nB
ρ (J ( j,k)), (55)

where T is the single swimmer translational motion given by
equation (11) and

J ( j,k) :=
∫ T

0
dt ((δx1

A)k + (δx2
A)k + (δx3

A)k) C j−k . (56)

Again a distinction can be made between passive (k = 0) terms
and active (k � 1) terms. As for the rotational interaction, the
passive advection results from the same calculation that gives
the time averaged flow field, equation (24), and yields the result

Δx2
A passive ∼

∑

B �=A

21πa2ξR
B ξF

B((ξR
B )2 − (ξF

B)2) sin(φB)

128D3r 2
B A

× [1 − 3(nB · r̂B A)2]r̂B A

+
∑

B �=A

17πa2ξR
B ξF

B sin(φB)

32r 3
B A

{3(nB · r̂B A)

× [5(nB · r̂B A)2 − 3]r̂B A − [3(nB · r̂B A)2 − 1]nB}. (57)

In addition to this passive advection there will be an active
contribution, which we expect to have a substantially larger
amplitude, scaling as a/D instead of (a/D)2. However, unlike
the rotational interaction, this does not come from the first non-
trivial term, i.e., j = 2, k = 1. This is because the sum
of displacements δx1

A + δx2
A + δx3

A is itself o(a/D), since,
as discussed following equation (10), this quantity represents
the centre of mass motion of the swimmer, which is only
non-zero because of hydrodynamic interactions between the
spheres. The same is true of all terms with k = 1 so that the
leading active contribution comes solely from the term with
j = 3, k = 2, for which we find

J (3,2) = −6π D2{ξR
A [ξR

B sin(ηB A) + ξF
B sin(ηB A − φB)]

+ ξF
A[ξR

B sin(ηB A + φA) + ξF
B sin(ηB A + φA − φB)]},(58)

and the active advection is then given by

Δx2
A active ∼

∑

B �=A

−aJ (3,2)

8r 4
B A

{[1 + 2(nA · nB)2

− 5(nA · r̂B A)2 − 5(nB · r̂B A)2

− 20(nA · nB)(nA · r̂B A)(nB · r̂B A)

+ 35(nA · r̂B A)2(nB · r̂B A)2]r̂B A

+ 2[(nA · r̂B A) + 2(nA · nB)(nB · r̂B A)

− 5(nA · r̂B A)(nB · r̂B A)2]nA}. (59)

Again, although this is higher order in 1/r than either of
the passive contributions given in equation (57) its prefactor
is substantially larger, so that it will dominate the advection
for all moderate separations (up to ∼30 times the swimmer
length).

8
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4.3. An improved near field calculation

A drawback of the approach we have just described is that it
is based on a far field analysis, where the separation between
swimmers is large compared to the size of an individual,
D/r 
 1. Since the Oseen tensor approach allows us to
determine the hydrodynamic interactions between two spheres
of the same swimmer when they are a distance D apart (for the
determination of the single swimmer motion), it should also
allow us to determine the interactions between two spheres of
different swimmers when the separation between them is also
o(D). Clearly this cannot be done on the basis of a multipole
expansion in powers of D/r , since for r = o(D) this will be,
at best, very slowly convergent. At these close separations we
can replace equation (35) for the relative position of the two
spheres with

xr
B − xs

A = (xr
B(0)−xs

A(0)) + (xr
B−xr

B(0)) − (xs
A−xs

A(0)),

=: r(r,s)
B A + δxr

B − δxs
A. (60)

If we consider that the deviation of each sphere from its ‘mean’
position is small compared to the separation between them,
ξ/D 
 1, then we can still make use of an expansion of
stokeslets to determine the interactions in the same way as
before. The price that we pay for this is that the tensors S( j,k)

appearing in equation (36) are no longer independent of the
pair of spheres (r, s), so that each pair needs to be considered
individually. This leads to a substantial increase in the length
of our formulae. For example, equation (44) becomes

[A, ]αβ = a

4
P−1(δαγ n A

β − δβγ n A
α )

×
∑

B �=A

∞∑

j=0

j∑

k=0

nB
λ n A

σ · · · n A
τ nB

ν · · · nB
ρ

×
∑

r,s

[S( j,k)

γ λ σ ···τ ν···ρ(r(r,s)
B A )]

× (δxs
A)k(δxr

B) j−k[ζ s
A ∂tζ

r
B], (61)

where ζ 1 = 3D + 2ξ̃R + ξ̃F, ζ 2 = ξ̃F − ξ̃R and ζ 3 =
−(3D+ ξ̃R +2ξ̃F). The leading order contribution to the active
interaction comes from the j = 0, k = 0 and j = 1, k = 1
terms and thus can be thought of as a collection of stokeslets,
S(0,0), and stokes doublets, S(1,1) [57]. The integrals over a
complete swimming stroke of these terms are straightforward,
but the number of them makes their evaluation tedious and we
shall not quote the results here. The advection can be treated
in a similar fashion, but again the results will not be quoted
explicitly due to the length of the final expressions.

A comparison of the results of the near and far field
calculations is presented in figure 2 for two parallel, coplanar
swimmers. The swimmers are initially aligned along the
x-direction, n = (1, 0, 0), with swimmer A at the origin
and swimmer B at the point rB A = r (cos(θ), sin(θ), 0).
Both swimmers are identical with parameter values a =
0.05D, φA = φB = π/2 and ξR = ξF = 0.2D.

First, in figure 2(a) we show how the rotation, ny , depends
on the separation, r , between the swimmers at a fixed relative
angle of θ = 60◦ in the near field calculation. When the
swimmers are in phase (solid line), this is found to asymptote
onto the predicted far field scaling of r−4

B A for distances of

Figure 2. Comparison of the near and far field calculations of the
interactions between two swimmers. (a) Dependence of the
rotational interaction with distance between the two swimmers when
the relative phase is ηB A = 0 (solid line) and ηB A = π/2 (dashed
line) and the angle between them is θ = 60◦. The inset shows the
same data with logarithmic axes to illustrate the scaling with r . (b)
and (c) Variation of the rotation angle with θ at a fixed separation of
(b) r = 5D and (c) r = 10D for two swimmers that are in phase. In
both cases the solid blue line represents the near field calculation and
the dashed black line the far field calculation.

greater than about 10D. At these large separations ny is
negative indicating a tendency for the swimmers to repel each
other, however for separations of less than ∼3D it changes sign
revealing a short distance attraction. Since the interactions are
dominated by the active term, changing the relative phase can
yield qualitative and quantitative changes in the rotation. As a
particular example, when the relative phase is ηB A = π/2 the
amplitude of the active rotation, equation (50), vanishes so that
in the far field it decays as r−5

B A instead of the expected r−4
B A. In

9
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Figure 3. Dependence of the rotation angle ny on θ at a fixed
separation of r = 5D when the arm amplitudes are different. (a)
When the swimmers are in phase there is no sensitivity to the arm
amplitudes. (b) For a relative phase of ηB A = π/2, ny is strongly
dependent on the relative magnitude of ξR and ξF:
(i) ξR = ξF = 0.2D, (ii) ξR = 0.3D, ξF = 0.133D and
(iii) ξR = 0.133D, ξF = 0.3D.

figures 2(b) and (c) we show how ny varies as one swimmer is
moved in a circle around the other, keeping a fixed separation
between them. At a separation of r = 5D (figure 2(b))
there are noticeable differences between the near and far
field calculations, although the qualitative features are the
same. These discrepancies are substantially reduced when the
separation is increased to r = 10D (figure 2(c)), indicating
that the far field description is sufficient. In both these cases
the relative phase was ηB A = 0.

In figure 3 we illustrate how the form of the rotational
interaction changes when the relative magnitude of the arm
amplitudes, ξR and ξF, are varied. In varying the arm
amplitudes we change the difference ξR −ξF while holding the
product ξRξF fixed so as to maintain an approximately constant
swimming speed. In particular we compare the three cases;
ξR = ξF = 0.2D corresponding to self-T-dual swimmers,
ξR = 0.3D, ξF = 0.133D corresponding to extensile
swimmers and ξR = 0.133D, ξF = 0.3D corresponding to
contractile swimmers. In all cases, the other model parameters
were a = 0.05D and φA = φB = π/2.

Intriguingly the relative phase plays an important role with
there being no difference between the three cases if the relative
phase is either ηB A = 0 or π , figure 3(a). An indication of why
this might be so can be found in the amplitude I(3,2) of the far

field calculation of the interactions, which when the swimmers
are identical and φ = π/2 simplifies to

I(3,2) = (ξR+ξF)(ξR−ξF) sin(ηB A)−2ξRξF cos(ηB A), (62)

showing that varying the amplitudes as we have described
does not change the asymptotic form of the active rotation
if the swimmers are exactly in phase or exactly out of
phase. Since the active terms dominate the interactions
this leads to the unexpected consequence that the collective
hydrodynamics is insensitive to the relative magnitude of the
two arm amplitudes ξR, ξF and hence to whether the swimmer
is extensile, contractile or self-T-dual. In contrast, when the
relative phase is ηB A = π/2 the interactions are sensitive to
the magnitude of the arm amplitudes, figure 3(b). However, the
behaviour does not follow very precisely the asymptotic form
described by equation (62), showing again the shortcomings of
a simple far field description of the interactions at separations
of only a small number of body lengths.

5. Conclusion

In this paper we have described in detail the hydrodynamics
of a simple model of linked sphere swimmers, focusing on the
time averaged flow field and swimmer–swimmer interactions.
The results reveal features that are unexpected from the
simple scaling arguments that suggest swimmers behave like
force dipoles in the far field limit [8, 13]. For self-T-dual
swimmers, such as the Najafi–Golestanian model with equal
amplitudes of the two arms, time reversal symmetry forbids
the dipolar term, leading to a flow field which scales as 1/r 3.
Moreover, a second swimmer does not behave as a passive
scalar, just moving with the flow field generated by the first.
Rather, the swimmer–swimmer interaction is dominated by
terms that depend on the relative phase of the two swimmers.
For the Najafi–Golestanian model this remains true until the
swimmer separation exceeds about thirty times the length of an
individual, after which the interactions finally become dipolar.

The techniques we have presented here for the analysis of
the hydrodynamics of linked sphere swimmers are based on
perturbative expansions for swimmers made up of spheres that
are small and widely separated. As such, it allows us only to
extract the lowest order contributions to the interactions and
does not provide a robust framework for the determination of
all the higher order corrections that become important when
the sphere separations are comparable to their radius. Such
a programme could be fruitfully developed by employing
the existing techniques for colloidal hydrodynamics [58, 59].
Nonetheless, our analysis is able to shed considerable light
on the nature of the far field interactions between swimmers,
highlighting an important interplay between active and passive
contributions. In particular, the combination of symmetry
suppressing the dipolar terms and a substantially larger
prefactor for the active terms results in the interactions
assuming a higher order (D/r)4 dependence on separation,
out to distances of ∼30 swimmer lengths, and in them being
sensitive to the relative phase of the swimmers.

There remain many avenues for further research. In
particular it is important to understand more fully which of our
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results are generic. A natural progression is to consider further
variants of the linked sphere swimmers utilizing transverse
rather than longitudinal swimming strokes. The role of
surfaces and external forcing and making connections to
continuum models of swimmers are also areas where linked
sphere models of swimmers are likely to prove useful.
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